VPX Optical Interfaces: Standards, Protocols & Applications

Embedded Tech Trends
January 2015
Rodger H. Hosking
Pentek, Inc.
Topics

- Embedded System Requirements
- Optical Gigabit Interface Technology
- Optical vs. Copper Links
- VITA Standards for Optical Links
- VITA 49 Radio Transport Protocol
- Application Strategies
Embedded System Technology Requirements

- **Wider Bandwidths: Video, Comms & Radar Signals**
 - Improved image resolution, target identification, signal detection & exploitation
 - More traffic within each expensive slice of the allocated radio frequency spectrum

- **Faster Sensors, Data Converters and DSPs**
 - Multi-gigahertz sampling rates required to digitize these wideband signals
 - DSP improves spectral efficiency, minimizes interference, and supports more users
 - Faster interfaces required on each device

- **Faster Links Between Embedded System Elements**
 - Higher data rates between boards within a chassis
 - Higher data rates between systems and racks
 - Digitizers and front end DSP operations are moving closer to the antenna
 - Longer data transmission paths to remotely located acquisition sub-systems
Optical Link “Nuts and Bolts”

- **Cable Type**
 - Multimode Fibre
 - Single Mode Fibre

- **Light Emitters**
 - LEDs: 780, 850, & 1300 nm
 - LASERs: 1310, 1550, & 1625 nm
 - VCSELs: 650 to 1300 nm

- **Light Detectors**
 - PIN Diode
 - Avalanche Photo Diode

- **Modulation Schemes**
 - AM - Simple, low performance
 - FM - Better, but limited bandwidth
 - Digital - Best speed and signal integrity
 - Costs are dropping rapidly

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AM</th>
<th>FM</th>
<th>Digital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal-to-Noise Ratio</td>
<td>Low-to-Moderate</td>
<td>Moderate-High</td>
<td>High</td>
</tr>
<tr>
<td>Performance vs. Attenuation</td>
<td>Sensitive</td>
<td>Tolerant</td>
<td>Invariant</td>
</tr>
<tr>
<td>Transmitter Cost</td>
<td>Moderate-High</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Receiver Cost</td>
<td>Moderate</td>
<td>Moderate-High</td>
<td>High</td>
</tr>
<tr>
<td>Receiver Gain Adjustment</td>
<td>Often Required</td>
<td>Not Required</td>
<td>Not Required</td>
</tr>
<tr>
<td>Installation</td>
<td>Adjustments Requires</td>
<td>No Adjustments Required</td>
<td>No Adjustments Required</td>
</tr>
<tr>
<td>Multichannel Capabilities</td>
<td>Require High</td>
<td>Fewer Channels</td>
<td>Good</td>
</tr>
<tr>
<td>Performance Over Time</td>
<td>Moderate</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Environmental Factors</td>
<td>Moderate</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
</tbody>
</table>
Optical Cables: Multimode vs. Single Mode

- **Multimode**
 - Lowest cost transceivers and cable
 - Thicker optical core allows multiple paths (modes) for light to travel
 - Core diameters of 50 or 62.5 microns + cladding diameter of 125 microns
 - Compatible with less expensive lasers at 850 or 1300 nm
 - Supports 2.5 GHz data rates across 300 meters
 - Terminations (connectors) are easier to install

- **Single Mode**
 - More expensive transceivers and cable
 - Thin optical core allows a single path (mode) for light to travel
 - Core diameter typically 9 microns + cladding diameter of 125 microns
 - Compatible with more expensive lasers at 1310 or 1550 nm
 - Supports 2.5 GHz data rates greater than 10 km
 - Terminations require a skilled technician
Copper vs. Optical Interfaces

<table>
<thead>
<tr>
<th>Property</th>
<th>Copper</th>
<th>Optical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Transceiver Cost</td>
<td>Low</td>
<td>High but dropping</td>
</tr>
<tr>
<td>PC Network Interface Cards</td>
<td>Integrated in PC or laptop</td>
<td>Usually optional at $100-$200</td>
</tr>
<tr>
<td>Power over Ethernet</td>
<td>Supported at low cost</td>
<td>Not possible</td>
</tr>
<tr>
<td>Data Rate</td>
<td>1 GHz</td>
<td>>10 GHz</td>
</tr>
<tr>
<td>Cable Loss - 100 meters</td>
<td>94%</td>
<td>3%</td>
</tr>
<tr>
<td>Max Transmission Distance</td>
<td>100 m (cat 6)</td>
<td>300 m (multi-mode)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 km (single mode)</td>
</tr>
<tr>
<td>EMI Susceptibility Risk</td>
<td>Moderate</td>
<td>Zero</td>
</tr>
<tr>
<td>EMI Radiation Risk</td>
<td>Moderate</td>
<td>Zero</td>
</tr>
<tr>
<td>Security / Eavesdropping Risk</td>
<td>High</td>
<td>Extremely Low</td>
</tr>
<tr>
<td>Termination Costs</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Cable Cost per Length</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Cable Weight per 1000 m</td>
<td>60 to 600 kg</td>
<td>6 kg</td>
</tr>
<tr>
<td>Fire Hazard</td>
<td>Supports current flow if shorted</td>
<td>Zero</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>25 pounds</td>
<td>100-250 pounds</td>
</tr>
</tbody>
</table>
VITA 17.1 - Serial Front Panel Data Port (sFPDP)

- Replaces older VITA 17 FPDP 32-bit parallel flat ribbon cable specification
 - Limited to 160 MB/sec
 - Limited to a few meters in length
 - Simple raw data interface with flow control, single & multi-drop

- VITA 17.1 Features and Benefits
 - Gigabit serial data stream implementation of FPDP
 - Optical and copper implementations supported
 - Nominal data rates of 247 MB/sec
 - Data rates limited only by cable/transceiver technologies
 - Distance limited by cable/transceiver technologies
 - Full duplex operation with CRC, loop, flow control, etc.
 - Copy mode allows boards to be daisy-chained
 - Much smaller and lighter cables and connectors
VITA 17.1 sFPDP Deployments

- Sonar upgrades for US Navy Guided Missile Destroyers
 - SQQ-89 program USS McCampbell

- US Navy NSSN Sonar Transmit System
 - USS Texas

- US Navy Airborne Laser Mine Detection System (ALMDS)
 - Northrop Grumman ALMDS
 - USS North Carolina

- US Navy NSSN Simulation/Stimulation System
VITA 17.1 sFPDP Products for VPX

- **Front panel sFPDP Connectors**
 - Flexible SFP+ (small form-factor pluggable) modular interfaces
 - Copper (TwinAX) or Optical (LC), single or multi-mode
 - Low-cost industry standard with many vendors

- **FPGA Functions**
 - SFP+ gigabit serial interfaces
 - sFPDP protocol engine supports all VITA 17.1 modes and specs
 - PCIe Gen2 x8 interface – 4 GB/sec
 - Eight DMA engines for PCIe
 - 2 GB SDRAM memory buffers
 - CRC Support
 - Metadata packet headers
 - Simplifies system integration
MT Optical Interconnects

- **MT Ferrule**
 - An extremely popular connection for x4 to x24 optical lanes
 - Operates at rates up to 20 Gbits/sec per lane
 - Supports single and multi-mode links
 - Typically protected in a shell, collar or ferrule
 - Like the VITA 66.4 housing
 - Availability of 48, 72 and 96 lane MT ferrules

- **MTP**
 - MT Pluggable
 - MT ferrule inside a keyed collar with a locking tab
 - Wide variety of cables, lengths available

- **Circular Bulkhead MTP**
 - Full spec sealed connectors for military applications
Ruggedized Optical MT Backplane Interconnect System
- Replaces half of VPX P2
- Self-aligning, blind mate connector housings
- Floating, MT ferrule inside housings
- Eliminates front panel optical I/O
- Supports any optical protocol
 - Including sFPDP, Xilinx Aurora, 10GbE, SRIO, VITA Radio Transport, etc
- Backplane connections between modules
- Backplane connections to chassis bulkhead connectors
- Specification is being updated for final balloting and approval
Samtec FireFly™ Micro Flyover System

- Complete Electrical-Optical Transceiver Assembly
- Uses 24-lane male MT connector
- Spring-loaded, fits inside VITA 66.4 housing
- One 12-lane optical receiver
- One 12-lane optical transmitter
- Provides 12 full-duplex optical links
- Data rates to 14 Gbits/sec per optical lane

13 cm or 5.1 in
VITA 66.4 Optical Backplane Products for VPX

- 3U VPX FMC Carrier with Virtex-7 FPGA
- High Pin Count FMC Site
- x8 PCIe Gen 3 delivers 8 GB/sec
- Flexible PCIe DMA Controllers
- 4 GB 1600 MHz DDR3 SDRAM

- 16-pairs LVDS User I/O on P2
- VITA-46, VITA-48, VITA-65, VITA-57.1
- Shipping now, delivering 12 GBytes/sec optical I/O
- Air-cooled and conduction cooled versions
- Industry’s First Product for VITA-66.4

Model 5973 3U VPX Carrier with cover plate removed exposing Samtec FireFly VITA 66.4 Interface cabling
VPX Optical Connections: System Strategies

- Optical links are faster than copper for critical high-bandwidth board-to-board interconnects within a chassis
 - MT-to-MT cables are easy to install as required
- Bulkhead connectors offer external optical links
- MTP-to-MTP cables connect between chassis
 - Benefits: High Speed and Long Distance
- Small Remote Sensor Acquisition Sub-Systems
 - Exploit optical MTP cable interconnections – speed, weight, distance
- Supports a judicious mix of copper and optical interconnects to meet requirements
VITA 49 – VITA Radio Transport Protocol

- Transport-layer protocol designed for radio equipment interoperability
 - For digitized signal sample streams for software radio systems
 - Originally, between radio receivers and signal processing equipment
 - Now, also between signal processing equipment and radio transmitters

- Target Applications
 - Spectral Monitoring and Scanning
 - SIGINT and Tactical Information
 - Communications and COMINT
 - Radar and EW Countermeasures

- Functional Objectives
 - Precision time stamping for beamforming, antenna array processing
 - Synchronization across channels and sites
 - Stream tagging for identification, content, format and operational parameters
 - Monitor status of receiver and transmitter equipment
 - Control operation of receiver and transmitter equipment
VITA 49.0 – VITA Radio Transport Protocol

- VRT IF Data Packets capture payload data, time stamp, channel and signal ID
 - Flexible data formats and support for extremely precise time stamping
- VRT Context Packets report all operational parameter values of the radio equipment
 - Standardized methodology for a wide range of standard and unique parameters
- VRT Information Stream contains IF Data Packets and Context Packets
 - VRT Receiver associates data and context streams appropriately for different applications
- Same radio hardware can be used for a wide range of applications
 - VITA 49.0 does not support control of hardware or radio transmit operations

![Diagram of VITA 49.0 - VITA Radio Transport Protocol](image-url)
VITA 49.2 – Transmit and Control Extension

- Maintains Receive IF Data and Receive Context Packets from VITA 49.0
- Adds new protocols for complete receive and transmit systems, plus control:
 - **Stimulus Packets** provide radio signals to be transmitted
 - **Capabilities Packets** announce configurable assets of each device and parameter ranges
 - **Control Packets** send operational control parameters to radio equipment with acknowledgement
 - **Transmitter Context Packets** deliver operational status and parameters of transmitters
 - **Spectrum Packets** deliver limited spectral data for monitoring and scanning

- VITA 49 working group participants are from industry, universities, and government
Remote Sensor Sub-Systems with Optical Links

- Digitize at the Antenna across Optical Links
 - Local FPGA preprocessing tasks
 - Digital downconverters, tuning & bandwidth selection
 - Choose from popular FPGA-based protocols
 - Aurora or sFPDP: lightweight, good for raw data
 - 1 or 10 GbE: vast infrastructure, more overhead
 - SerialRapidIO: flexible, routable, scalable
 - VITA 49 VRT: complete radio transceiver protocol
 - Avoids signal degradation through long copper coaxial cables
 - Eliminates EMI susceptibility and radiation
 - Improves eavesdropping security, tamper resistance
 - Cables are immune to shorts, moisture, corrosion, easier to install, lighter and smaller diameter
 - Ideal for large ships, aircraft, antenna farms, UAVs, and SIGINT facilities
VITA Optical Standards for VPX – Leading the Way

- Optical links are replacing copper in embedded systems
- VITA 17.1 Serial FPDP offers simple, efficient raw data link
- VITA 66.4 backplane optical I/O ready for deployment
- VITA 49 VRT protocol ideal for optically-connected radio systems
- Mature and diverse optical cable and connector technologies
- Cost for optical transceivers, cables and connectors are dropping
- Optical offers lower maintenance costs and improved reliability
- Light weight optical cables benefit unmanned vehicle systems
- FPGA protocols can be installed to match the application
- Remote optically-connected sensor sub-systems make sense
- More Information: www.pentek.com
Looking into the Future

- **VITA Architectures for Optical Study Group**
 - Study architectures to exploit optical interfaces for embedded systems
 - Processors, carrier cards, backplanes, connectors, etc.

- **Optical Interfaces on FPGA**
 - Built-in optical transceivers simplifying designs
 - Eliminates separate transceivers

- **Optical links embedded within backplanes**
 - Replace copper traces with optical links
 - Simplifies integration
 - Standardized optical switching